ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 513]      



Задача 102700

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

AC и BD — диагонали вписанного четырёхугольника ABCD. Углы DAC и ABD равны соответственно $ \gamma$ и $ \delta$, сторона CD = a. Найдите площадь треугольника ACD

Прислать комментарий     Решение


Задача 110765

Темы:   [ Теорема синусов ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9,10

На основании AD и боковой стороне AB равнобедренной трапеции ABCD взяты точки E, F соответственно так, что CDEF – также равнобедренная трапеция. Докажите, что  AE·ED = AF·FB.

Прислать комментарий     Решение

Задача 52361

 [Обобщенная теорема синусов.]
Темы:   [ Теорема синусов ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Докажите, что отношение стороны треугольника к синусу противолежащего угла равно диаметру окружности, описанной около треугольника.

Прислать комментарий     Решение


Задача 52842

Темы:   [ Теорема синусов ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Около треугольника ABC, в котором BC = a, $ \angle$B = $ \alpha$, $ \angle$C = $ \beta$, описана окружность. Биссектриса угла A пересекает эту окружность в точке K. Найдите AK.

Прислать комментарий     Решение


Задача 52847

Темы:   [ Теорема синусов ]
[ Окружность, вписанная в угол ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что BC = a, $ \angle$A = $ \alpha$, $ \angle$B = $ \beta$. Найдите радиус окружности, касающейся стороны AC в точке A и касающейся стороны BC.

Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 513]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .