ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

Вниз   Решение


Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?

ВверхВниз   Решение


В кошельке лежат 2 монеты на общую сумму 15 коп. Одна из них не пятак. Что это за монеты?

ВверхВниз   Решение


Натуральное число называют совершенным, если оно равно сумме всех своих делителей, кроме самого этого числа. (Например, число 28 – совершенное:  28 = 1 + 2 + 4 + 7 + 14.)  Докажите, что совершенное число не может быть полным квадратом.

ВверхВниз   Решение


Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

ВверхВниз   Решение


Сколькими способами можно разбить 14 человек на пары?

ВверхВниз   Решение


Автор: Дидин М.

При каком наименьшем $k$ среди любых трёх ненулевых действительных чисел можно выбрать такие два числа $a$ и $b$, что  |$a - b$| ≤ $k$  или  |1/a1/b| ≤ $k$?

ВверхВниз   Решение


В квадрат вписано 1993 различных правильных треугольника (треугольник вписан, если три его вершины лежат на сторонах квадрата).
Докажите, что внутри квадрата можно указать точку, лежащую на границе не менее чем 499 из этих треугольников.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1331]      



Задача 57600

Тема:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 2+
Классы: 9

Докажите, что:
а)  rp = ra(p - a), rra = (p - b)(p - c) и  rbrc = p(p - a);
б)  S2 = p(p - a)(p - b)(p - c)     (формула Герона);
в)  S2 = rrarbrc.
Прислать комментарий     Решение


Задача 57613

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что abc = 4prR и  ab + bc + ca = r2 + p2 + 4rR.
Прислать комментарий     Решение


Задача 57614

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что  $ {\frac{1}{ab}}$ + $ {\frac{1}{bc}}$ + $ {\frac{1}{ca}}$ = $ {\frac{1}{2Rr}}$.
Прислать комментарий     Решение


Задача 57615

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что $ {\frac{a+b-c}{a+b+c}}$ = tg$ \left(\vphantom{\frac{\alpha }{2}}\right.$$ {\frac{\alpha }{2}}$$ \left.\vphantom{\frac{\alpha }{2}}\right)$tg$ \left(\vphantom{\frac{\beta }{2}}\right.$$ {\frac{\beta}{2}}$$ \left.\vphantom{\frac{\beta }{2}}\right)$.
Прислать комментарий     Решение


Задача 57616

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что ha = bc/2R.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1331]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .