ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

  а) Пусть q – натуральное число и функция   f(x) = cqx + anxn + ... + a1x + a0  принимает целые значения при  x = 0, 1, 2, ..., n + 1.
Докажите, что при любом натуральном x число  f(x) также будет целым.
  б) Пусть выполняются условия пункта а) и  f(x) делится на некоторое целое  m ≥ 1  при  x = 0, 1, 2, ..., n + 1.  Докажите, что  f(x) делится на m при всех натуральных x.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 22]      



Задача 77898

Темы:   [ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 5+
Классы: 10,11

Докажите, что числа вида 2n при различных целых положительных n могут начинаться на любую наперёд заданную комбинацию цифр.
Прислать комментарий     Решение


Задача 107838

Темы:   [ Десятичная система счисления ]
[ Рациональные и иррациональные числа ]
[ Принцип Дирихле (углы и длины) ]
[ Показательные функции и логарифмы (прочее) ]
[ Последовательности (прочее) ]
Сложность: 4+
Классы: 10,11

Рассмотрим степени пятерки: 1, 5, 25, 125, 625, ... Образуем последовательность их первых цифр: 1, 5, 2, 1, 6, ...
Докажите, что любой кусок этой последовательности, записанный в обратном порядке, встретится в последовательности первых цифр степеней двойки  (1, 2, 4, 8, 1, 3, 6, 1, ...).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .