|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Отрезок MN, параллельный стороне CD четырехугольника ABCD, делит его площадь пополам (точки M и N лежат на сторонах BC и AD). Длины отрезков, проведенных из точек A и B параллельно CD до пересечения с прямыми BC и AD, равны a и b. Докажите, что MN2 = (ab + c2)/2, где c = CD. M – множество точек на плоскости. Точка O называется "почти центром симметрии" множества M, если из M можно выбросить одну точку так, что для оставшегося множества O является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости? Косинус угла между скрещивающимися прямыми AB и CD равен В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими? На плоскости даны две прямые и точка M. Найдите на одной из прямых такую точку X, что отрезок MX делится другой прямой пополам. На доске размером 8×8 в углу расставлены 9 фишек в форме квадрата 3×3. Любая фишка может прыгать через другую фишку на свободную клетку (по горизонтали, вертикали или диагонали). Можно ли за некоторое количество прыжков расставить фишки в форме такого же квадрата в каком-либо другом углу доски? На доске $6\times6$ расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться Все грани призмы ABCDA₁B₁C₁D₁ касаются некоторого шара. Основанием призмы служит квадрат ABCD со стороной, равной 5. Угол C₁CD ─ острый, а ∠C₁CB = arctg ⁵⁄₃. Найдите ∠C₁CD, угол между боковым ребром и плоскостью основания призмы, а также расстояние от точки C до точки касания шара с плоскостью AA₁D. В классе 30 человек. Может ли быть так, что 9 из них имеют по 3 друга (в этом классе), 11 – по 4 друга, а 10 – по 5 друзей? Найти объём правильной четырёхугольной пирамиды, стороны основания которой a, а плоские углы при вершине равны углам наклона боковых рёбер к плоскости основания. Вдоль двух прямолинейных парковых аллеек посажены пять дубов — по три вдоль каждой аллеи. Где посадить шестой дуб так, чтобы можно было проложить еще две прямолинейные аллеи, вдоль каждой из которых росло бы тоже по три дуба? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|