ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На плоскости дано конечное число попарно непараллельных прямых, причем через точку пересечения любых двух из них проходит еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку.

Вниз   Решение


Решите систему

   

(a1, ..., an, b1, ..., bn – различные числа.)

ВверхВниз   Решение


Прямоугольный треугольник ABC является основанием пирамиды SABC , SO – высота пирамиды, C – вершина прямого угла треугольника ABC , OB = , COB = . Все боковые грани пирамиды одинаково наклонены к основанию пирамиды под углом, равным arctg . Найдите боковую поверхность пирамиды.

ВверхВниз   Решение


В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний.

ВверхВниз   Решение


Докажите тождество  

ВверхВниз   Решение


Муха ползёт из начала координат. При этом муха двигается только по линиям целочисленной сетки вправо или вверх (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо. Найдите вероятность того, что в какой-то момент:
  а) муха окажется в точке  (8, 10);
  б) муха окажется в точке  (8, 10),  по дороге пройдя по отрезку, соединяющему точки  (5,6)  и  (6. 6);
  в) муха окажется в точке  (8, 10),  пройдя внутри круга радиуса 3 с центром в точке  (4, 5).

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 107]      



Задача 65317

 [Муха на решётке]
Темы:   [ Дискретное распределение ]
[ Целочисленные решетки (прочее) ]
[ Сочетания и размещения ]
Сложность: 3+
Классы: 9,10,11

Муха ползёт из начала координат. При этом муха двигается только по линиям целочисленной сетки вправо или вверх (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо. Найдите вероятность того, что в какой-то момент:
  а) муха окажется в точке  (8, 10);
  б) муха окажется в точке  (8, 10),  по дороге пройдя по отрезку, соединяющему точки  (5,6)  и  (6. 6);
  в) муха окажется в точке  (8, 10),  пройдя внутри круга радиуса 3 с центром в точке  (4, 5).

Прислать комментарий     Решение

Задача 65319

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Сочетания и размещения ]
Сложность: 3+
Классы: 8,9,10,11

Знатоки и Телезрители играют в "Что? Где? Когда" до шести побед – кто первый выиграл шесть раундов, тот и победил в игре. Вероятность выигрыша Знатоков в одном раунде равна 0,6, ничьих не бывает. Сейчас Знатоки проигрывают со счетом  3 : 4.  Найдите вероятность того, что Знатоки все же выиграют.

Прислать комментарий     Решение

Задача 65332

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
Сложность: 3+
Классы: 8,9,10,11

У Алисы в кармане шесть волшебных пирожков – два увеличивающих (съешь – вырастешь), а остальные уменьшающие (съешь – уменьшишься). Когда Алиса встретила Мэри Энн, она, не глядя, вынула из кармана три пирожка и отдала их Мэри. Найдите вероятность того, что у одной из девочек нет ни одного увеличивающего пирожка.

Прислать комментарий     Решение

Задача 65333

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 3+
Классы: 8,9,10,11

Петр Иванович, еще 49 мужчин и 50 женщин в случайном порядке рассаживаются вокруг круглого стола. Назовём мужчину довольным, если рядом с ним сидит женщина. Найдите:
  а) вероятность того, что Петр Иванович доволен;
  б) математическое ожидание числа довольных мужчин.

Прислать комментарий     Решение

Задача 65347

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
Сложность: 3+
Классы: 8,9,10,11

Будем считать, что рождение девочки и мальчика равновероятны. Известно, что в некоторой семье двое детей.
  а) Какова вероятность того, что из них один мальчик и одна девочка?
  б) Дополнительно известно, что один из детей – мальчик. Какова теперь вероятность того, что в семье один мальчик и одна девочка?
  в) Дополнительно известно, что мальчик родился в понедельник. Какова теперь вероятность того, что в семье один мальчик и одна девочка?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .