|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На плоскости дано конечное число попарно непараллельных прямых, причем через точку пересечения любых двух из них проходит еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку. Решите систему (a1, ..., an, b1, ..., bn – различные числа.) Прямоугольный треугольник ABC является основанием пирамиды SABC , SO – высота пирамиды, C – вершина прямого угла треугольника ABC , OB = В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний. Докажите тождество Муха ползёт из начала координат. При этом муха двигается только по линиям целочисленной сетки вправо или вверх (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо. Найдите вероятность того, что в какой-то момент: |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 107]
Муха ползёт из начала координат. При этом муха двигается только по линиям целочисленной сетки вправо или вверх (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо. Найдите вероятность того, что в какой-то момент:
Знатоки и Телезрители играют в "Что? Где? Когда" до шести побед – кто первый выиграл шесть раундов, тот и победил в игре. Вероятность выигрыша Знатоков в одном раунде равна 0,6, ничьих не бывает. Сейчас Знатоки проигрывают со счетом 3 : 4. Найдите вероятность того, что Знатоки все же выиграют.
У Алисы в кармане шесть волшебных пирожков – два увеличивающих (съешь – вырастешь), а остальные уменьшающие (съешь – уменьшишься). Когда Алиса встретила Мэри Энн, она, не глядя, вынула из кармана три пирожка и отдала их Мэри. Найдите вероятность того, что у одной из девочек нет ни одного увеличивающего пирожка.
Петр Иванович, еще 49 мужчин и 50 женщин в случайном порядке рассаживаются
вокруг круглого стола. Назовём мужчину довольным, если рядом с ним сидит женщина. Найдите:
Будем считать, что рождение девочки и мальчика равновероятны. Известно, что в некоторой семье двое детей.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 107] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|