|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости дано конечное число попарно непараллельных прямых, причем через точку пересечения любых двух из них проходит еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку. Решите систему (a1, ..., an, b1, ..., bn – различные числа.) Прямоугольный треугольник ABC является основанием пирамиды SABC , SO – высота пирамиды, C – вершина прямого угла треугольника ABC , OB = В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний. Докажите тождество Муха ползёт из начала координат. При этом муха двигается только по линиям целочисленной сетки вправо или вверх (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо. Найдите вероятность того, что в какой-то момент: Сколько различных делителей имеют числа а) 2·3·5·7·11; б) 22·33·55·77·1111 ?
Во вписанном четырёхугольнике ABCD известны углы: ∠DAB = α, ∠ABC = β, ∠BKC = γ, где K – точка пересечения диагоналей. Найдите угол ACD.
Решите уравнение: x(x + 1) = 2014·2015. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 979]
Докажите, что числа а) 232001 + 1; б) 232001 – 1 – составные.
Докажите следующие свойства функций gk,l(x)
(определения функций gk,l(x)
смотри здесь):
Решите уравнение: x(x + 1) = 2014·2015.
Разделить a128 – b128 на (a + b)(a² + b²)(a4 + b4)(a8 + b8)(a16 + b16)(a32 + b32)(a64 + b64).
Разделить a2k – b2k на (a + b)(a² + b²)(a4 + b4)...(a2k–1 + b2k–1).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 979] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|