|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На рёбрах AB , BC и AD тетраэдра ABCD взяты точки K , N и M соответственно, причём AK:KB = BN:NC = 2:1 , AM:MD = 3:1 . Постройте сечение тетраэдра плоскостью, проходящей через точки K , M и N . В каком отношении эта плоскость делит ребро CD ? На боковых сторонах AB и BC равнобедренного треугольника ABC расположены точки соответственно M и N так, что Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины. Докажите, что если а < 1, b < 1 и a + b ≥ 0,5, то (1 – a)(1 – b) ≤ 9/16. Основание пирамиды SABCD – параллелограмм ABCD . Какая фигура получилась в сечении этой пирамиды плоскостью ABM , где M – точка на ребре SC ? У короля 19 баронов-вассалов. Может ли оказаться так, что у каждого вассального баронства одно, пять или девять соседних баронств? В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если ∠AOB = α, а радиус круга равен r. На сторонах AB, AC и BC треугольника ABC взяли точки K, L и M соответственно так, что ∠A = ∠KLM = ∠C. Докажите, что если α , β и γ – углы остроугольного треугольника, то sin α+ sin β+ sin γ>2 . Докажите, что x² + y² + 1 ≥ xy + x + y при любых x и y. Основание треугольника равно a, а высота, опущенная на основание, равна h. В треугольник вписан квадрат, одна из сторон которого лежит на основании треугольника, а две вершины на боковых сторонах. Найдите отношение площади квадрата к площади треугольника. Докажите, что если уравнения x³ + px + q = 0, x³ + p'x + q' = 0 имеют общий корень, то (pq' – qp')(p – p')² = (q – q')³. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
Докажите, что многочлен P(x) делится на свою производную тогда и только тогда, когда P(x) имеет вид P(x) = an(x – x0)n.
Пусть (P(x), Q(x)) = D(x).
Докажите, что многочлен P(x) = (xn+1 – 1)(xn+2 – 1)...(xn+m – 1) делится на Q(x) = (x – 1)(x2 – 1)...(xm – 1).
Докажите, что если уравнения x³ + px + q = 0, x³ + p'x + q' = 0 имеют общий корень, то (pq' – qp')(p – p')² = (q – q')³.
При делении многочлена x1951 – 1 на x4 + x³ + 2x² + x + 1 получается частное и остаток. Найти в частном коэффициент при x14.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|