|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан трёхгранный угол с вершиной O и точка A на его ребре. По двум другим его рёбрам скользят точки B и C . Найдите геометрическое место точек пересечения медиан треугольников ABC . Докажите, что: а) ma2 = (2b2 + 2c2 - a2)/4; б) ma2 + mb2 + mc2 = 3(a2 + b2 + c2)/4. Докажите, что система неравенств Решите уравнение: Дан выпуклый четырехугольник ABCD. Прямые BC и AD пересекаются в точке O, причём B лежит на отрезке O и A на отрезке OD. I – центр вписанной окружности треугольника OAB, J – центр вневписанной окружности треугольника OCD, касающейся стороны CD и продолжений двух других сторон. Перпендикуляры, опущенные из середины отрезка IJ на прямые BC и AD, пересекают соответствующие стороны четырёхугольника (не продолжения) в точках X и Y. Доказать, что отрезок XY делит периметр четырёхугольника ABCD пополам, причём из всех отрезков с этим свойством и концами на BC и AD XY имеет наименьшую длину. В треугольнике ABC биссектриса AD, высота BE и медиана CF пересекаются в точке O. Найдите ∠A, если
AF =
С помощью циркуля и линейки постройте треугольник ABC по стороне
AB = c, высоте
CC1 = h и разности углов
|
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 92]
С помощью циркуля и линейки постройте треугольник по биссектрисе, медиане и высоте, проведённым из одной вершины.
Постройте треугольник по высоте и биссектрисе, проведённым из одной вершины, и медиане, проведённой из другой вершины.
С помощью циркуля и линейки постройте треугольник по его биссектрисе и отрезкам, на которые она делит сторону треугольника. Пусть нужный треугольник ABC построен, CD = lc — данная биссектриса, BD = a' и AD = b' — данные отрезки, на которые она делит сторону AB. Обозначим BC = a, AC = b.
Первый способ.
По формуле для квадрата биссектрисы треугольника (рис.1)
lc2 = AD2 = BC . AC - BD . AD = ab - a'b'.
По свойству биссектрисы треугольника
Отсюда вытекает следующее построение. По данным отрезкам a' и b' строим отрезок
x =
y =
Поскольку
a2 =
то можно построить отрезок
a =
По известным отрезкам a, a' и lc строим треугольник BCD. Далее очевидно.
Второй способ.
Известно, что геометрическое место точек, отношение расстояний от каждой из которых до двух заданных точек A и B постоянно и отлтчно от 1, есть окружность (окружность Аполлония). Пусть a' > b'. Тогда биссектриса внешнего угла при вершине C пересекает продолжение стороны BA за точку A (рис.2). Обозначим точку пересечения через E. Тогда по свойству биссектрисы внешнего угла треугольника
AE = AB .
(Отрезок DE виден из искомой точки C под прямым углом.)
Далее на отрезке AB строим как на диаметре окружность — окружность Аполлония для
точек A и B и отношения
С помощью циркуля и линейки постройте треугольник ABC по стороне
AB = c, высоте
CC1 = h и разности углов
С помощью циркуля и линейки постройте треугольник по двум сторонам и биссектрисе, проведённым из одной вершины.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 92] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|