|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Существует ли выпуклый 1978-угольник, у которого все углы выражаются целым числом градусов? В стране Мара расположено несколько замков. Из каждого замка ведут три дороги. Из какого-то замка выехал рыцарь. Странствуя по дорогам, он из каждого замка, стоящего на его пути, поворачивает либо направо, либо налево по отношению к дороге, по которой приехал. Рыцарь никогда не сворачивает в ту сторону, в которую он свернул перед этим. Доказать, что когда-нибудь он вернётся в исходный замок. Доказать, что в трапеции сумма углов при меньшем основании больше, чем при большем. В треугольнике ABC известно, что AB = a , AC = b , Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника
AB1C1 пересекаются в точке N. Докажите, что преобразование P числовой прямой является проективным тогда и только тогда, когда оно представляется в виде
P(x) =
где a, b, c, d — такие числа, что
ad - bc
Пусть точки A1, B1, C1 — середины сторон соответственно BC,
AC и AB треугольника ABC. Докажите, что для любой точки O выполняется
равенство
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
Пусть точки A1, B1, C1 — середины сторон соответственно BC,
AC и AB треугольника ABC. Докажите, что для любой точки O выполняется
равенство
SBOC .
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|