|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Сфера, касающаяся нижнего основания цилиндра, имеет единственную общую точку с окружностью его верхнего основания и делит ось цилиндра в отношении 1:6:2, считая от центра одного из оснований. Найдите объём цилиндра, если известно, что сфера касается двух его образующих, находящихся на расстоянии 4 друг от друга. Постройте треугольник ABC, зная три точки P, Q, R, в которых высота, биссектриса и медиана, проведенные из вершины C, пересекают описанную окружность. На боковых рёбрах PA , PB , PC (или на их продолжениях) треугольной пирамиды PABC взяты точки M , N , K соответственно. Докажите, что отношение объёмов пирамид PMNK и PABC равно Хорда большей из двух концентрических окружностей касается меньшей. Докажите, что точка касания делит эту хорду пополам.
Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке K, причём точка K делит ломаную ACB на две части равной длины. Докажите, что треугольник ABC – равнобедренный. Периметр выпуклого четырёхугольника равен 4. Докажите, что его площадь не превосходит 1. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]
Длина прямоугольного участка равна 4 метра, а ширина – 1 метр.
Существует ли такие выпуклый четырёхугольник и точка P внутри него, что сумма расстояний от P до вершин больше периметра четырёхугольника?
Периметр выпуклого четырёхугольника равен 4. Докажите, что его площадь не превосходит 1.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|