|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан тетраэдр ABCD . Все плоские углы при вершине D – прямые; DA = 1 , DB = 2 , DC = 3 . Найдите медиану тетраэдра, проведённую из вершины D . Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых. Дан многочлен степени $n \geqslant 1$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что модули коэффициентов этого многочлена не превосходят 2. Дан треугольник ABC. На прямых AB, BC и CA взяты точки C1, A1, и B1 соответственно, отличные от вершин треугольника. Докажите, что окружности, описанные около треугольников AB1C1, A1B1C, A1BC1, пересекаются в одной точке.
|
Страница: 1 2 3 4 >> [Всего задач: 17]
а) Докажите, что описанные окружности этих треугольников имеют общую точку (точка Микеля). б) Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности, проходящей через точку Микеля.
Точки A', B' и C' – середины сторон соответственно
BC, CA и AB треугольника ABC, а BH – его высота.
Дан треугольник ABC. На прямых AB, BC и CA взяты точки C1, A1, и B1 соответственно, отличные от вершин треугольника. Докажите, что окружности, описанные около треугольников AB1C1, A1B1C, A1BC1, пересекаются в одной точке.
а) б) серединные перпендикуляры к отрезкам OH, OaHa, ObHb и OcHc пересекаются в одной точке.
Страница: 1 2 3 4 >> [Всего задач: 17] |
||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|