|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике ABC высоты, опущенные на стороны AB и BC, не меньше этих сторон соответственно. Найти углы треугольника. В таблицу n*n записаны n2 чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел, расположенных по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна. Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200]
В треугольнике ABC точка M – середина стороны AC,
точка P лежит на стороне BC. Отрезок AP пересекает BM в точке O. Оказалось, что BO = BP.
На медиане AM треугольника ABC взята точка K, причём
AK : KM = 1 : 3.
На сторонах AC и BC треугольника ABC выбраны точки M и N соответственно так, что MN || AB. На стороне AC отмечена точка K так, что CK = AM. Отрезки AN и BK пересекаются в точке F. Докажите, что площади треугольника ABF и четырёхугольника KFNC равны.
Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении.
На стороне CB треугольника ABC взята точка M, а на стороне CA – точка P. Известно, что CP : CA = 2CM : CB. Через точку M проведена прямая, параллельная CA, а через P – прямая параллельная AB. Докажите, что построенные прямые пересекаются на медиане CN.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200] |
||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|