|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи При помощи ножниц вырежьте в тетрадном листе дырку, через которую мог бы пролезть слон! С помощью циркуля и линейки постройте квадрат, три вершины которого лежали бы на трёх данных параллельных прямых. В прямоугольник ABCD вписаны два различных прямоугольника, имеющих общую вершину K на стороне AB . Докажите, что сумма их площадей равна площади прямоугольника ABCD Углы треугольника α, β, γ удовлетворяют неравенствам sin α > cos β, sin β > cos γ, sin γ > cos α . Докажите, что треугольник остроугольный. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
Решите систему уравнений:
Существуют ли такие натуральные x и y, что x4 – y4 = x³ + y³?
Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.
Трёхчлен ax² + bx + c при всех целых x является точной четвёртой степенью. Доказать, что тогда a = b = 0.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|