ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

На рёбрах AB , BC и AD тетраэдра ABCD взяты точки K , N и M соответственно, причём AK:KB = BN:NC = 2:1 , AM:MD = 3:1 . Постройте сечение тетраэдра плоскостью, проходящей через точки K , M и N . В каком отношении эта плоскость делит ребро CD ?

Вниз   Решение


На боковых сторонах AB и BC равнобедренного треугольника ABC расположены точки соответственно M и N так, что = m , = n . Прямая MN пересекает высоту BD треугольника в точке O . Найдите отношение .

ВверхВниз   Решение


Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины.

ВверхВниз   Решение


Докажите, что если  а < 1,  b < 1  и  a + b ≥ 0,5,  то  (1 – a)(1 – b) ≤ 9/16.

ВверхВниз   Решение


Основание пирамиды SABCD – параллелограмм ABCD . Какая фигура получилась в сечении этой пирамиды плоскостью ABM , где M – точка на ребре SC ?

ВверхВниз   Решение


У короля 19 баронов-вассалов. Может ли оказаться так, что у каждого вассального баронства одно, пять или девять соседних баронств?

ВверхВниз   Решение


В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

ВверхВниз   Решение


На сторонах AB, AC и BC треугольника ABC взяли точки K, L и M соответственно так, что  ∠A = ∠KLM = ∠C.
Докажите, что если  AL + LM + MB > CL + LK + KB,  то  LM < LK.

ВверхВниз   Решение


Докажите, что если α , β и γ – углы остроугольного треугольника, то sin α+ sin β+ sin γ>2 .

ВверхВниз   Решение


Докажите, что  x² + y² + 1 ≥ xy + x + y  при любых x и y.

ВверхВниз   Решение


Основание треугольника равно a, а высота, опущенная на основание, равна h. В треугольник вписан квадрат, одна из сторон которого лежит на основании треугольника, а две вершины на боковых сторонах. Найдите отношение площади квадрата к площади треугольника.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 519]      



Задача 108646

Темы:   [ Вспомогательные подобные треугольники ]
[ Биссектриса угла (ГМТ) ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

M – точка пересечения диагоналей трапеции ABCD. На основании BC выбрана такая точка P, что  ∠APM = ∠DPM.
Докажите, что расстояние от точки C до прямой AP равно расстоянию от точки B до прямой DP.

Прислать комментарий     Решение

Задача 111468

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

В треугольнике ABC биссектриса AD делит сторону BC в отношении  BD : DC = 2 : 1.  В каком отношении медиана CE делит эту биссектрису?

Прислать комментарий     Решение

Задача 111528

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношения площадей (прочее) ]
Сложность: 3
Классы: 8,9

Основание треугольника равно a, а высота, опущенная на основание, равна h. В треугольник вписан квадрат, одна из сторон которого лежит на основании треугольника, а две вершины на боковых сторонах. Найдите отношение площади квадрата к площади треугольника.

Прислать комментарий     Решение

Задача 111703

Темы:   [ Вспомогательные подобные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В треугольнике ABC с прямым углом C проведены высота CD, и биссектриса CF, DK и DL – биссектрисы треугольников BDC и ADC.
Докажите, что CLFK – квадрат.

Прислать комментарий     Решение

Задача 115315

Темы:   [ Вспомогательные подобные треугольники ]
[ Геометрические неравенства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

На сторонах AB, AC и BC треугольника ABC взяли точки K, L и M соответственно так, что  ∠A = ∠KLM = ∠C.
Докажите, что если  AL + LM + MB > CL + LK + KB,  то  LM < LK.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 519]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .