ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.

Вниз   Решение


Угол между плоскостями равен α . Найдите площадь ортогональной проекции правильного шестиугольника со стороной 1, лежащего в одной из плоскостей, на другую плоскость.

ВверхВниз   Решение


У 2009 года есть такое свойство: меняя местами цифры числа 2009, нельзя получить меньшее четырехзначное число (с нуля числа не начинаются). В каком году это свойство впервые повторится снова?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 159]      



Задача 67219

Темы:   [ Центральная симметрия (прочее) ]
[ Четность и нечетность ]
[ Топология (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)
Прислать комментарий     Решение


Задача 55712

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.

Прислать комментарий     Решение


Задача 78076

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9

Точка O — центр круга, описанного около треугольника ABC. Точки A1, B1 и C1 симметричны точке O относительно сторон треугольника ABC. Докажите, что все высоты треугольника A1B1C1 проходят через точку O, а все высоты треугольника ABC проходят через центр круга, описанного около треугольника A1B1C1.
Прислать комментарий     Решение


Задача 55713

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Пусть P - середина стороны AB выпуклого четырехугольника ABCD. Докажите, что если площадь треугольника PDC равна половине площади четырехугольника ABCD, то стороны BC и AD параллельны.

Прислать комментарий     Решение


Задача 55626

Темы:   [ Свойства симметрии и центра симметрии ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 8,9

Фигура имеет две перпендикулярные оси симметрии. Верно ли, что она имеет центр симметрии?

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .