ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два пирата играли на золотые монеты. Сначала первый проиграл половину своих монет (отдал второму), потом второй проиграл половину своих, потом снова первый проиграл половину своих. В результате у первого оказалось 15 монет, а у второго — 33. Сколько монет было у первого пирата до начала игры?

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 113]      



Задача 107984

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Индукция (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 8,9,10

Найдите x1000, если  x1 = 4,  x2 = 6,  и при любом натуральном  n ≥ 3  xn – наименьшее составное число, большее   2xn–1xn–2.

Прислать комментарий     Решение

Задача 109555

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Деление с остатком ]
[ Десятичная система счисления ]
Сложность: 4
Классы: 8,9,10,11

Дана последовательность натуральных чисел a1, a2, ..., an, в которой a1 не делится на 5 и для всякого n  an+1 = an + bn,  где bn – последняя цифра числа an. Докажите, что последовательность содержит бесконечно много степеней двойки.

Прислать комментарий     Решение

Задача 109842

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 1,2

Последовательности положительных чисел (xn) и (yn) удовлетворяют условиям     при всех натуральных n. Докажите, что если все числа x1, x2, y1, y2 больше 1, то  xn > yn  при каком-нибудь натуральном n.

Прислать комментарий     Решение

Задача 65210

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Двоичная система счисления ]
[ Производящие функции ]
Сложность: 4+
Классы: 10,11

День в Анчурии может быть либо ясным, когда весь день солнце, либо дождливым, когда весь день льет дождь. И если сегодня день не такой, как вчера, то анчурийцы говорят, что сегодня погода изменилась. Однажды анчурийские ученые установили, что 1 января день всегда ясный, а каждый следующий день в январе будет ясным, только если ровно год назад в этот день погода изменилась. В 2015 году январь в Анчурии был весьма разнообразным: то солнце, то дожди. В каком году погода в январе впервые будет меняться ровно так же, как в январе 2015 года?

Прислать комментарий     Решение

Задача 109692

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Числа Фибоначчи ]
[ Ограниченность, монотонность ]
[ Монотонность и ограниченность ]
Сложность: 4+
Классы: 9,10,11

Найдите все бесконечные ограниченные последовательности натуральных чисел a1, a2, a3, ..., для всех членов которых, начиная с третьего, выполнено

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .