|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Два пирата играли на золотые монеты. Сначала первый проиграл половину своих монет (отдал второму), потом второй проиграл половину своих, потом снова первый проиграл половину своих. В результате у первого оказалось 15 монет, а у второго — 33. Сколько монет было у первого пирата до начала игры?
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 113]
Найдите x1000, если x1 = 4, x2 = 6, и при любом натуральном n ≥ 3 xn – наименьшее составное число, большее 2xn–1 – xn–2.
Дана последовательность натуральных чисел a1, a2, ..., an, в которой a1 не делится на 5 и для всякого n an+1 = an + bn, где bn – последняя цифра числа an. Докажите, что последовательность содержит бесконечно много степеней двойки.
Последовательности положительных чисел (xn) и (yn) удовлетворяют условиям
День в Анчурии может быть либо ясным, когда весь день солнце, либо дождливым, когда весь день льет дождь. И если сегодня день не такой, как вчера, то анчурийцы говорят, что сегодня погода изменилась. Однажды анчурийские ученые установили, что 1 января день всегда ясный, а каждый следующий день в январе будет ясным, только если ровно год назад в этот день погода изменилась. В 2015 году январь в Анчурии был весьма разнообразным: то солнце, то дожди. В каком году погода в январе впервые будет меняться ровно так же, как в январе 2015 года?
Найдите все бесконечные ограниченные последовательности натуральных чисел a1, a2, a3, ..., для всех членов которых, начиная с третьего, выполнено
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 113] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|