|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В трапеции большее основание равно 5, одна из боковых сторон равна 3. Известно, что одна из диагоналей перпендикулярна заданной боковой стороне, а другая делит угол между заданной боковой стороной и основанием пополам. Найдите площадь трапеции. Найдите ключ к "тарабарской грамоте" — тайнописи, применявшейся ранее в России для дипломатической переписки: "Пайцике тсюг т "`камащамлтой чмароке"' — кайпонили, нмирепяшвейля мапее ш Моллии цся цинсоракигелтой неменилти". Решить уравнение x8 + 4x4 + x² + 1 = 0. |
Страница: 1 2 3 4 >> [Всего задач: 17]
Одна окружность находится внутри другой. Их радиусы равны 28 и 12, а кратчайшее расстояние между точками этих окружностей равно 10. Найдите расстояние между центрами.
Даны два круга — один внутри другого. Через их центры проведен в большем круге диаметр, который окружностью меньшего круга делится на три части, равные 5, 8 и 1. Найдите расстояние между центрами кругов.
Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
Каково взаимное расположение двух окружностей, если: а) расстояние между центрами равно 10, а радиусы равны 8 и 2; б) расстояние между центрами равно 4, а радиусы равны 11 и 17; в) расстояние между центрами равно 12, а радиусы равны 5 и 3?
Докажите, что наибольшее расстояние между точками двух окружностей, лежащих одна вне другой, равно сумме радиусов этих окружностей и расстояния между их центрами.
Страница: 1 2 3 4 >> [Всего задач: 17] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|