|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи С помощью циркуля и линейки проведите через данную точку, лежащую внутри данного угла, прямую, отсекающую от данного угла треугольник заданного периметра. Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа? Диагонали параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём ∠AMO = ∠MAD. Через данную точку A проведите прямую так, чтобы отрезок, заключенный между точками пересечения ее с данной прямой и данной окружностью, делился точкой A пополам. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 238]
Точка M внутри окружности делит хорду этой окружности на отрезки, равные a и b. Через точку M проведена хорда AB, делящаяся точкой M пополам. Найдите AB.
Диагонали AC и BD вписанного в окружность четырёхугольника ABCD взаимно перпендикулярны и пересекаются в точке M. Известно, что AM = 3, BM = 4 и CM = 6. Найдите CD.
Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.
Докажите, что произведения отрезков пересекающихся хорд окружности равны между собой.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 238] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|