ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В четырёхугольнике ABCD известно, что $ \angle$ABD = $ \angle$ACD = 45o, $ \angle$BAC = 30o, BC = 1. Найдите AD.

Вниз   Решение


На стороне AB треугольника ABC во внешнюю сторону построен равносторонний треугольник. Найдите расстояние между его центром и вершиной C, если AB = c и $ \angle$C = 120o.

ВверхВниз   Решение


Девять чисел таковы, что сумма каждых четырёх из них меньше суммы пяти остальных. Докажите, что все числа положительны.

ВверхВниз   Решение


Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 161]      



Задача 116498

Темы:   [ Шахматная раскраска ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой?

Прислать комментарий     Решение

Задача 116993

Темы:   [ Шахматная раскраска ]
[ Подсчет двумя способами ]
[ Степень вершины ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?

Прислать комментарий     Решение

Задача 73578

Темы:   [ Шахматная раскраска ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 7,8,9

Каждая сторона равностороннего треугольника разбита на n равных частей. Через точки деления проведены прямые, параллельные сторонам. В результате треугольник разбит на n2 треугольничков. Назовём цепочкой последовательность треугольничков, в которой ни один не появляется дважды и каждый последующий имеет общую сторону с предыдущим. Каково наибольшее возможное количество треугольничков в цепочке?
Прислать комментарий     Решение


Задача 65873

Темы:   [ Шахматная раскраска ]
[ Замощения костями домино и плитками ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

Квадратная коробка конфет разбита на 49 равных квадратных ячеек. В каждой ячейке лежит шоколадная конфета – либо чёрная, либо белая. За один присест Саша может съесть две конфеты, если они одного цвета и лежат в соседних по стороне или по углу ячейках. Какое наибольшее количество конфет гарантированно может съесть Саша, как бы ни лежали конфеты в коробке?

Прислать комментарий     Решение

Задача 66706

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Гомотетия (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В таблице 10×10 записано 100 различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра ("повернуть прямоугольник на 180°"). Всегда ли за 99 ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .