ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В четырёхугольнике ABCD известно, что $ \angle$ABD = $ \angle$ACD = 45o, $ \angle$BAC = 30o, BC = 1. Найдите AD.

Вниз   Решение


На стороне AB треугольника ABC во внешнюю сторону построен равносторонний треугольник. Найдите расстояние между его центром и вершиной C, если AB = c и $ \angle$C = 120o.

ВверхВниз   Решение


Девять чисел таковы, что сумма каждых четырёх из них меньше суммы пяти остальных. Докажите, что все числа положительны.

ВверхВниз   Решение


Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 87404

Темы:   [ Боковая поверхность параллелепипеда ]
[ Объем параллелепипеда ]
Сложность: 3
Классы: 10,11

Стороны основания прямого параллелепипеда равны a и b и образуют угол в 30o . Боковая поверхность равна S . Найдите объём параллелепипеда.
Прислать комментарий     Решение


Задача 65589

Темы:   [ Боковая поверхность параллелепипеда ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

Можно ли из кубиков размером 1×1×1 склеить многогранник, площадь поверхности которого равна 2015? (Кубики приклеиваются так, что склеиваемые грани полностью примыкают друг к другу.)

Прислать комментарий     Решение

Задача 107775

Темы:   [ Боковая поверхность параллелепипеда ]
[ Площадь и объем (задачи на экстремум) ]
[ Объем параллелепипеда ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Автор: Ботин Д.А.

Достаточно ли для изготовления закрытой со всех сторон прямоугольной коробки, вмещающей не менее 1995 единичных кубиков,
  а) 962;   б) 960;   в) 958 квадратных единиц материала?

Прислать комментарий     Решение

Задача 86485

Темы:   [ Наглядная геометрия в пространстве ]
[ Боковая поверхность параллелепипеда ]
Сложность: 2
Классы: 7,8

Куб сложен из 27 одинаковых кубиков (см. рис.). Сравните площадь поверхности этого куба и площадь поверхности фигуры, которая получится, если из него вынуть все "угловые" кубики.

Прислать комментарий     Решение

Задача 87259

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Боковая поверхность параллелепипеда ]
Сложность: 3
Классы: 8,9

Основание призмы – квадрат со стороной a . Одна из боковых граней – также квадрат, другая – ромб с углом 60o . Найдите полную поверхность призмы.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .