ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Два пирата играли на золотые монеты. Сначала первый проиграл половину своих монет (отдал второму), потом второй проиграл половину своих, потом снова первый проиграл половину своих. В результате у первого оказалось 15 монет, а у второго — 33. Сколько монет было у первого пирата до начала игры?

Вниз   Решение


Автор: Перлин А.

У каждого из жителей города N знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины жителей.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 243]      



Задача 53528

Темы:   [ Ортоцентр и ортотреугольник ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9

Докажите, что расстояние от вершины треугольника до точки пересечения высот вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.

Прислать комментарий     Решение

Задача 54471

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Высоты равнобедренного остроугольного треугольника, в котором AB = BC, пересекаются в точке H.
Найдите площадь треугольника ABC, если  AH = 5,  а высота AD равна 8.

Прислать комментарий     Решение

Задача 61193

 [Ортоцентр реугольника]
Темы:   [ Ортоцентр и ортотреугольник ]
[ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 10,11

Точки a1, a2 и a3 расположены на единичной окружности  zz = 1.
Докажите, что точка  h = a1 + a2 + a3  является ортоцентром треугольника с вершинами в точках a1, a2 и a3.

Прислать комментарий     Решение

Задача 64543

Темы:   [ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3+

Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если  DE = 5 см.

Прислать комментарий     Решение

Задача 65035

Темы:   [ Ортоцентр и ортотреугольник ]
[ Угол между касательной и хордой ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что  A1H = C1H.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 243]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .