ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В четырёхугольнике ABCD известно, что $ \angle$ABD = $ \angle$ACD = 45o, $ \angle$BAC = 30o, BC = 1. Найдите AD.

Вниз   Решение


На стороне AB треугольника ABC во внешнюю сторону построен равносторонний треугольник. Найдите расстояние между его центром и вершиной C, если AB = c и $ \angle$C = 120o.

ВверхВниз   Решение


Девять чисел таковы, что сумма каждых четырёх из них меньше суммы пяти остальных. Докажите, что все числа положительны.

ВверхВниз   Решение


Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 31233

Темы:   [ Малая теорема Ферма ]
[ Периодичность и непериодичность ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найти последнюю цифру числа  71988 + 91988.

Прислать комментарий     Решение

Задача 60743

Темы:   [ Малая теорема Ферма ]
[ Комбинаторика орбит ]
[ Правило произведения ]
Сложность: 3
Классы: 9,10,11

p – простое число. Сколько существует способов раскрасить вершины правильного p-угольника в a цветов? (Раскраски, которые можно совместить поворотом, считаются одинаковыми.)

Прислать комментарий     Решение

Задача 86116

Тема:   [ Малая теорема Ферма ]
Сложность: 3
Классы: 10

Дана последовательность  an = 1 + 2n + ... + 5n.  Существуют ли пять идущих подряд её членов, кратных 2005?

Прислать комментарий     Решение

Задача 30673

Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10

Найдите остаток от деления 2100 на 101.

Прислать комментарий     Решение

Задача 30675

Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10

Докажите, что  3003000 – 1  делится на 1001.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .