|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья "Поиск инварианта" (Ионин Ю., Курляндчик Л.) Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Известно, что в тетраэдре ABCD ребро AB перпендикулярно ребру CD , а ребро BC перпендикулярно ребру AD . Докажите, что ребро AC перпендикулярно ребру BD . Две противоположные вершины единичного куба совпадают с центрами оснований цилиндра, а остальные вершины расположены на боковой поверхности цилиндра. Найдите высоту и радиус основания цилиндра. Решите систему уравнений: В равносторонний треугольник вписана окружность. Этой окружности и сторон треугольника касаются три малые окружности. Найдите сторону треугольника, если радиус малой окружности равен r.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 201]
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?
Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число ab + a + b.
В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 201] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|