|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Трапеция ABCD такова, что на её боковых сторонах AD и BC существуют такие точки P и Q соответственно, что ∠APB = ∠CPD, ∠AQB = ∠CQD. Пусть F1, F2, F3, ... – последовательность выпуклых четырёхугольников, где Fk+1 (при k = 1, 2, 3, ...) получается так: Fk разрезают по диагонали, одну из частей переворачивают и склеивают по линии разреза с другой частью. Какое наибольшее количество различных четырёхугольников может содержать эта последовательность? (Различными считаются многоугольники, которые нельзя совместить движением.) Через центр сферы радиуса R проведены три попарно перпендикулярные плоскости. Найдите радиус сферы, касающейся всех этих плоскостей и данной сферы. На рисунке изображена фигура ABCD . Стороны AB , CD и AD этой фигуры– отрезки (причём AB||CD и AD Найдите высоту трапеции со сторонами 10, 10, 10 и 26. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 70]
На доске записаны два числа a и b (a > b). Их стирают и заменяют числами a+b/2 и a–b/2. С вновь записанными числами поступают аналогичным образом. Верно ли, что после нескольких стираний разность между записанными на доске числами станет меньше 1/2002?
Докажите, что для чисел Люка Ln (см. задачу 60585) выполнено соотношение
Пусть f(x) = x² + 12x + 30. Решите уравнение f(f(f(f(f(x))))) = 0.
Приведённый квадратный трёхчлен f(x) имеет два различных корня. Может ли так оказаться, что уравнение f(f(x)) = 0 имеет три различных корня, а уравнение f(f(f(x))) = 0 – семь различных корней?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 70] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|