|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Как расположены плоскости симметрии ограниченного тела, если оно имеет две оси вращения? (Осью вращения тела называется прямая, после поворота вокруг которой на любой угол тело совмещается само с собой.) |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79]
Найдите все нечётные натуральные числа, большие 500, но меньшие 1000, у каждого из которых сумма последних цифр всех делителей (включая 1 и само число) равна 33.
Пусть натуральное число n таково, что n + 1 делится на 24. Докажите, что сумма всех натуральных делителей n делится на 24.
Пусть τ(n) – количество положительных делителей натурального числа n =
Найдите натуральное число n, зная, что оно имеет два простых делителя и удовлетворяет условиям τ(n) = 6, σ(n) = 28.
Некоторое натуральное число n имеет два простых делителя. Его квадрат имеет а) 15; б) 81 делителей. Сколько делителей имеет куб этого числа?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|