|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан трёхгранный угол с вершиной O и точка A на его ребре. По двум другим его рёбрам скользят точки B и C . Найдите геометрическое место точек пересечения медиан треугольников ABC . Докажите, что: а) ma2 = (2b2 + 2c2 - a2)/4; б) ma2 + mb2 + mc2 = 3(a2 + b2 + c2)/4. Докажите, что система неравенств Решите уравнение: Дан выпуклый четырехугольник ABCD. Прямые BC и AD пересекаются в точке O, причём B лежит на отрезке O и A на отрезке OD. I – центр вписанной окружности треугольника OAB, J – центр вневписанной окружности треугольника OCD, касающейся стороны CD и продолжений двух других сторон. Перпендикуляры, опущенные из середины отрезка IJ на прямые BC и AD, пересекают соответствующие стороны четырёхугольника (не продолжения) в точках X и Y. Доказать, что отрезок XY делит периметр четырёхугольника ABCD пополам, причём из всех отрезков с этим свойством и концами на BC и AD XY имеет наименьшую длину. |
Страница: 1 2 3 >> [Всего задач: 11]
Три равные окружности пересекаются в одной точке. Докажите, что треугольник с вершинами в остальных точках попарного пересечения окружностей равен треугольнику с вершинами в центрах окружностей.
Даны три равных окружности, пересекающихся в одной точке. Вторая точка пересечения каких-либо двух из этих окружностей и центр третьей определяют проходящую через них прямую. Докажите, что полученные три прямые пересекаются в одной точке.
а) H — точка пересечения высот треугольника ABC; б) радиус описанной окружности треугольника ABC тоже равен R.
Страница: 1 2 3 >> [Всего задач: 11] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|