|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На сторонах выпуклого четырёхугольника ABCD, площадь которого равна 2, взяты точки: K на AB, L на BC, M на CD, N на AD. При этом AK : KB = 2, BL : LC = 1 : 3, CM : MD = 1, DN : NA = 1 : 5. Найдите площадь шестиугольника AKLCMN.
В затылок друг другу выстроились n человек. Более высокие загораживают более низких, и тех не видно. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66]
Существуют ли два одночлена, произведение которых равно –12а4b², а сумма является одночленом с коэффициентом 1?
Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|