ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 67022  (#5)

Темы:   [ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 9,10,11

Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.
Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны.

Прислать комментарий     Решение

Задача 67023  (#6)

Темы:   [ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Простые числа и их свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

Прислать комментарий     Решение

Задача 67013  (#1)

Тема:   [ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9,10

Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность  $n - p$  также является простым числом.

Прислать комментарий     Решение

Задача 67024  (#2)

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 9,10,11

Точки $M$ и $N$ – середины сторон $AB$ и $AC$ треугольника $ABC$. Касательная $\ell$ к описанной окружности треугольника $ABC$ в точке $A$ пересекает прямую $BC$ в точке $K$. Докажите, что описанная окружность треугольника $MKN$ касается $\ell$.
Прислать комментарий     Решение


Задача 67025  (#3)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Векторы помогают решить задачу ]
[ Четность и нечетность ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 7,8,9,10,11

Среди любых пяти узлов обычной клетчатой бумаги обязательно найдутся два, середина отрезка между которыми – тоже узел клетчатой бумаги. А какое минимальное количество узлов сетки из правильных шестиугольников необходимо взять, чтобы среди них обязательно нашлось два, середина отрезка между которыми – тоже узел этой сетки?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .