ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 555]      



Задача 64864

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в 30╟ ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

Дан прямоугольный треугольник ABC. На катете AB во внешнюю сторону построен равносторонний треугольник ADB, а на гипотенузе AC во внутреннюю сторону – равносторонний треугольник AEC. Прямые DE и AB пересекаются в точке M. Весь чертёж стерли, оставив только точки A и B. Восстановите точку M.

Прислать комментарий     Решение

Задача 64885

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Существует ли выпуклый многогранник, у которого есть диагонали и каждая диагональ меньше любого ребра?

Прислать комментарий     Решение

Задача 64903

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3
Классы: 8,9

Автор: Рожкова М.

В треугольнике ABC точка M – середина AB, а точка D – основание высоты CD. Докажите, что  ∠A = 2∠B  тогда и только тогда, когда  AC = 2MD.

Прислать комментарий     Решение

Задача 64970

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9,10

Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что  AM = AN = AB  (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник.

Прислать комментарий     Решение

Задача 64974

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 9,10,11

Высоты AA1 и BB1 треугольника ABC пересекаются в точке H. Прямая CH пересекает полуокружность с диаметром AB, проходящую через точки A1 и B1, в точке D. Отрезки AD и BB1 пересекаются в точке M, BD и AA1 – в точке N. Докажите, что описанные окружности треугольников B1DM и A1DN касаются.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 555]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .