ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 109189

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правило произведения ]
Сложность: 4-
Классы: 8,9,10,11

Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)

Прислать комментарий     Решение

Задача 109196

Темы:   [ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
Сложность: 4-
Классы: 9,10,11

В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.

Прислать комментарий     Решение

Задача 109197

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площадь сечения ]
[ Объем помогает решить задачу ]
[ Призма (прочее) ]
[ Пирамида (прочее) ]
Сложность: 4-
Классы: 10,11

Можно ли разбить какую-нибудь призму на непересекающиеся пирамиды, у каждой из которых основание лежит на одном из оснований призмы, а противоположная вершина – на другом основании призмы?

Прислать комментарий     Решение

Задача 109193

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9

Пусть   = ,  где    – несократимая дробь.
Докажите, что существует бесконечно много натуральных n, при которых выполнено неравенство  bn+1 < bn.

Прислать комментарий     Решение

Задача 109195

Темы:   [ Ортоцентр и ортотреугольник ]
[ Свойства биссектрис, конкуррентность ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

На сторонах BC, AC и AB остроугольного треугольника ABC взяты точки A1, B1 и C1 так, что лучи A1A, B1B и С1C являются биссектрисами углов треугольника A1B1C1. Докажите, что AA1, BB1 и СС1 – высоты треугольника ABC.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .