ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



Задача 109189

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правило произведения ]
Сложность: 4-
Классы: 8,9,10,11

Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)

Прислать комментарий     Решение

Задача 109196

Темы:   [ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
Сложность: 4-
Классы: 9,10,11

В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.

Прислать комментарий     Решение

Задача 109197

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площадь сечения ]
[ Объем помогает решить задачу ]
[ Призма (прочее) ]
[ Пирамида (прочее) ]
Сложность: 4-
Классы: 10,11

Можно ли разбить какую-нибудь призму на непересекающиеся пирамиды, у каждой из которых основание лежит на одном из оснований призмы, а противоположная вершина – на другом основании призмы?

Прислать комментарий     Решение

Задача 109497

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 4-
Классы: 7,8,9

Выпуклая фигура F обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу F. Обязательно ли F – круг?

Прислать комментарий     Решение

Задача 109192

Темы:   [ Геометрия на клетчатой бумаге ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

Обёрткой плоской картины размером 1×1 назовём прямоугольный лист бумаги площади 2, которым можно, не разрезая его, полностью обернуть картину с обеих сторон. Ясно, что прямоугольник 2×1 и квадрат со стороной     – обёртки.
  а) Докажите, что есть и другие обёртки.
  б) Докажите, что обёрток бесконечно много.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .