ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 [Всего задач: 15]      



Задача 56603

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены высоты AA1, BB1 и CC1B2 и C2 — середины высоты BB1 и CC1. Докажите, что  $ \triangle$A1B2C2 $ \sim$ $ \triangle$ABC.
Прислать комментарий     Решение


Задача 56604

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

На высотах треугольника ABC взяты точки A1, B1 и C1, делящие их в отношении 2 : 1, считая от вершины. Докажите, что  $ \triangle$A1B1C1 $ \sim$ $ \triangle$ABC.
Прислать комментарий     Решение


Задача 52460

 [Теорема о бабочке]
Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Центральная симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Радикальная ось ]
[ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 5-
Классы: 8,9

Через середину C произвольной хорды AB окружности проведены две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что  PC = QC.

Прислать комментарий     Решение

Задача 56605

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5
Классы: 8,9

Окружность S1 с диаметром AB пересекает окружность S2 с центром A в точках C и D. Через точку B проведена прямая, пересекающая S2 в точке M, лежащей внутри S1, а S1 в точке N. Докажите, что  MN2 = CN . ND.
Прислать комментарий     Решение


Задача 56607

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 6
Классы: 8,9

а) Окружность, проходящая через точку C, пересекает стороны BC и AC треугольника ABC в точках A1 и B1, а его описанную окружность в точке M. Докажите, что  $ \triangle$AB1M $ \sim$ $ \triangle$BA1M.
б) На лучах AC и BC отложены отрезки AA1 и BB1, равные полупериметру треугольника ABCM — такая точка его описанной окружности, что  CM || A1B1. Докажите, что  $ \angle$CMO = 90o, где O — центр вписанной окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .