ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC  (AB = AC)  угол A равен α. На стороне AB взята точка D так, что  AD = AB/n.  Найдите сумму  n – 1  углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей:
  а) при  n = 3;
  б) при произвольном n.

Вниз   Решение


Квадратный лист клетчатой бумаги разбит на меньшие квадраты отрезками, идущими по сторонам клеток.
Докажите, что сумма длин этих отрезков делится на 4. (Длина стороны клетки равна 1.)

ВверхВниз   Решение


Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 65944

Темы:   [ Развертка помогает решить задачу ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10

Оклейте куб в один слой пятью равновеликими выпуклыми пятиугольниками.

Прислать комментарий     Решение

Задача 98205

Темы:   [ Четырехугольники (построения) ]
[ Построение треугольников по различным элементам ]
[ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.

Прислать комментарий     Решение

Задача 115730

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9,10

Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D, соответственно пересекаются в точке Q .
Докажите, что прямые AB и PQ перпендикулярны.

Прислать комментарий     Решение

Задача 115731

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 7,8,9,11

Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

Прислать комментарий     Решение

Задача 115732

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Пересекающиеся окружности ]
[ Средняя линия треугольника ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 3+
Классы: 8,9,10,11

Дана окружность и точка К внутри неё. Произвольная окружность, равная данной и проходящая через точку К, имеет с данной окружностью общую хорду. Найдите геометрическое место середин этих хорд.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .