ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Лист бумаги имеет форму круга. Можно ли провести на нем пять отрезков, каждый из которых соединяет две точки на границе листа так, чтобы среди частей, на которые эти отрезки делят лист, нашлись пятиугольник и два четырехугольника?

Вниз   Решение


Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 97898  (#6)

 [Сизифов труд]
Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9,10,11

На горе 1001 ступенька, на некоторых лежат камни, по одному на ступеньке. Сизиф берёт любой камень и переносит его на ближайшую сверху свободную ступеньку (то есть, если следующая ступенька свободна то на неё, а если занята, то на несколько ступенек вверх до первой свободной). После этого Аид скатывает на одну ступеньку вниз один из камней, у которых предыдущая ступенька свободна. Камней 500, и первоначально они лежали на нижних 500 ступеньках. Сизиф и Аид действуют по очереди, начинает Сизиф. Его цель – положить камень на верхнюю ступеньку. Может ли Аид ему помешать?

Прислать комментарий     Решение

Задача 97906  (#7)

Темы:   [ Объединение, пересечение и разность множеств ]
[ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 8,9,10

Автор: Фольклор

30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
  а) четырёх вечеров недостаточно,
  б) пяти вечеров также недостаточно,
  в) а десяти вечеров достаточно,
  г) и даже семи вечеров тоже достаточно.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .