ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.

Задача 2

С помощью циркуля и линейки разделите данный отрезок на n равных частей.

Задача 3

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?

Задача 4

В треугольнике ABC проведены триссектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне BC триссектрисы углов B и C пересекаются в точке A1; аналогично определим точки B1 и C1 (см. рис.). Докажите, что треугольник A1B1C1 равносторонний.

Задача 5

На отрезке длиной 1 закрашено несколько отрезков, причем расстояние между любыми двумя закрашенными точками не равно 0, 1. Докажите, что сумма длин закрашенных отрезков не превосходит 0, 5.


© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .