ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

Во время бала каждый юноша танцевал вальс с девушкой либо более красивой, чем на предыдущем танце, либо более умной, а один – с девушкой одновременно более красивой и более умной. Могло ли такое быть? (Юношей и девушек на балу было поровну.)

Задача 2

На круглой сковороде площади 1 испекли выпуклый блин площади больше ½. Докажите, что центр сковороды находится под блином.

Задача 3

Коридор покрыт несколькими ковровыми дорожками (возможно, с наложениями). Докажите, что можно убрать несколько дорожек таким образом, чтобы оставшиеся дорожки покрывали коридор и сумма их длин не превышала удвоенной длины коридора.

Задача 4

Известно, что ортогональные проекции некоторого тела на две непараллельные плоскости являются кругами. Докажите, что эти круги равны.

Задача 5

Внутри вписанного четырёхугольника ABCD существует точка K, расстояния от которой до сторон ABCD пропорциональны этим сторонам.
Доказать, что K – точка пересечения диагоналей ABCD.


© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .