ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

Доказать, что разносторонний треугольник нельзя разрезать на два равных треугольника.

Задача 2

Первого числа некоторого месяца в магазине было 10 видов товаров по одинаковой цене за штуку. После этого каждый день каждый товар дорожает либо в 2 раза, либо в 3 раза. Первого числа следующего месяца все цены оказались различными. Докажите, что отношение максимальной цены к минимальной больше 27.

 

Задача 3

Может ли квадрат какого-либо натурального числа начинаться с 1983 девяток?

Задача 4

Коридор покрыт несколькими ковровыми дорожками (возможно, с наложениями). Докажите, что можно убрать несколько дорожек таким образом, чтобы оставшиеся дорожки покрывали коридор и сумма их длин не превышала удвоенной длины коридора.

Задача 5

Можно ли каждую сторону квадрата так разделить на 100 частей, чтобы из полученных 400 отрезков нельзя было бы составить контура никакого прямоугольника, отличного от исходного квадрата?


© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .