ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58100
Темы:    [ Принцип Дирихле (углы и длины) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Поворот помогает решить задачу ]
Сложность: 6
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Даны две одинаковые окружности. На каждой из них отмечено по k дуг, угловые величины каждой из которых меньше $ {\frac{1}{k^2-k+1}}$ . 180o, причем окружности можно совместить так, чтобы отмеченные дуги одной окружности совпали с отмеченными дугами другой. Докажите, что эти окружности можно совместить так, чтобы все отмеченные дуги оказались на неотмеченных местах.

Решение

Совместим данные окружности и посадим в фиксированную точку одной из них маляра. Будем вращать эту окружность и поручим маляру красить ту точку окружности, мимо которой он проезжает, всякий раз, когда пересекаются какие-либо отмеченные дуги. Нужно доказать, что после полного оборота часть окружности останется неокрашенной. Конечный результат работы маляра будет такой же, как если бы ему поручили на i-м обороте красить окружность, когда i-я отмеченная дуга окружности, на которой сидит маляр, пересекается с какой-либо отмеченной дугой другой окружности, и сделали бы k оборотов.
Пусть $ \varphi_{1}^{}$,...,$ \varphi_{n}^{}$ — угловые величины отмеченных дуг. По условию $ \varphi_{1}^{}$ < $ \alpha$,...,$ \varphi_{n}^{}$ < $ \alpha$, где $ \alpha$ = 180o/(k2 - k + 1). За то время, пока пересекаются отмеченные дуги с номерами i и j, маляр окрашивает дугу величиной $ \varphi_{i}^{}$ + $ \varphi_{j}^{}$. Поэтому сумма угловых величин дуг, окрашенных маляром на i-м обороте, не превосходит k$ \varphi_{i}^{}$ + ($ \varphi_{1}^{}$ +...+ $ \varphi_{k}^{}$), а сумма угловых величин дуг, окрашенных за все k оборотов, не превосходит 2k($ \varphi_{1}^{}$ +...+ $ \varphi_{k}^{}$). Заметим, что при этом пересечение дуг с одинаковыми номерами мы учли фактически k раз. В частности, точка A, мимо которой проезжает маляр в тот момент, когда совпадают отмеченные дуги, заведомо покрашена k раз. Поэтому целесообразно выбросить из рассмотрения те дуги окружности, которые маляр красит в моменты пересечения каких-либо отмеченных дуг с одинаковыми номерами. Так как все эти дуги содержат точку A, то фактически мы выбросили только одну дугу, причем угловая величина этой дуги не превосходит 2$ \alpha$. Сумма угловых величин оставшейся части дуг, окрашенных на i-м обороте, не превосходит (k - 1)$ \varphi_{1}^{}$ + ($ \varphi_{1}^{}$ +...+ $ \varphi_{k}^{}$ - $ \varphi_{i}^{}$), а сумма угловых величин оставшейся части дуг, окрашенных за все k оборотов, не превосходит (2k - 2)($ \varphi_{1}^{}$ +...+ $ \varphi_{k}^{}$) < (2k2 - 2k)$ \alpha$. Часть окружности останется неокрашенной, если выполняется неравенство (2k2-2k)$ \alpha$$ \le$360o - 2$ \alpha$, т. е. $ \alpha$$ \le$180o/(k2 - k + 1).


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 21
Название Принцип Дирихле
Тема Принцип Дирихле
параграф
Номер 2
Название Углы и длины
Тема Принцип Дирихле (углы и длины)
задача
Номер 21.021

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .