ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32057
Тема:    [ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

В классе 25 человек. Известно, что среди любых трех из них есть двое друзей. Докажите, что есть ученик, у которого не менее 12 друзей.


Решение

Рассмотрим двоих учеников класса, которые не дружат между собой. (Если таких нет, то все ученики класса дружат между собой, значит, у каждого ученика имеется 24 друга, и задача решена.) Пусть этими двумя будут Вася и Петя. Тогда из оставшихся 23 учеников каждый дружит либо с Васей, либо с Петей. Действительно, если бы кто-то (скажем, Коля) не дружил бы ни с Васей, ни с Петей, то мы имели бы троих учеников, среди которых не было бы друзей. Теперь если предположить, что и Вася, и Петя имеют не более 11 друзей, то всего в классе, кроме этих двоих было бы не больше 22 человек (см. статью "Принцип Дирихле".). Полученное противоречие показывает, что один из школьников имеет не менее 12 друзей.

Замечания

Источник решения: книга "В.О.Бугаенко. Турниры им. Ломоносова. Конкурсы по математике. МЦНМО-ЧеРо. 1998".

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 08
Дата 1985
задача
Номер 17

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .