ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 109558

Темы:   [ Уравнения с модулями ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4-
Классы: 8,9,10

Даны три приведённых квадратных трехчлена:  P1(x), P2(x) и P3(x). Докажите, что уравнение  |P1(x)| + |P2(x)| = |P3(x)|  имеет не более восьми корней.

Решение

Каждый корень данного уравнения является корнем одного из квадратных трёхчленов  ± P1 ± P2 ± P3  с некоторым набором знаков. Таких наборов 8, и все они дают действительно квадратные трёхчлены, так как коэффициент при x² нечётен. Однако двум противоположным наборам знаков соответствуют квадратные уравнения, имеющие одни и те же корни. Значит, все решения уравнения  |P1(x)| + |P2(x)| = |P3(x)|  содержатся среди корней четырёх квадратных уравнений. Следовательно, их не более восьми.

Прислать комментарий

Задача 109816

Темы:   [ Уравнения с модулями ]
[ Монотонность и ограниченность ]
[ Последовательности функций (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 9,10,11

Какое наибольшее конечное число корней может иметь уравнение

|x-a1|+..+|x-a50|=|x-b1|+..+|x-b50|,

где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?

Решение

Положим f(x) = |x-a1|+...+|x-a50|-|x-b1|- .. -|x-b50| и перепишем исходное уравнение в виде f(x) = 0 .

Пусть c1 < c2 < .. < c100 – все числа из множества {a1, .., a50, b1, .., b50} , упорядоченные по возрастанию. На каждом из 101 промежутка [-,c1] , [c1,c2] , [c99,c100] , [c100,+) , функция f(x) линейна. Заметим, что на первом и последнем из этих промежутков f(x) = m = (a1+...+ a50) - (b1+...+ b50) и f(x) = -m соответственно, при этом m 0 , так как количество корней конечно.

Пойдем по числовой оси слева направо.
Вначале угловой коэффициент функции f(x) равен 0. Всякий раз, когда мы проходим одну из точек ci , он за счет смены знака при раскрытии соответствующего модуля изменяется на 2 .

Таким образом, он всегда равен четному целому числу и не может поменять знак, не обратившись перед этим в 0.
Значит, угловые коэффициенты на любых двух соседних промежутках либо оба неотрицательны, либо оба неположительны, т.е. функция f(x) на объединении этих промежутков либо неубывающая, либо невозрастающая.

Стало быть, если число ее корней конечно, то на каждом из 50 отрезков [c1,c3], .., [c97,c99], [c99,c100] она имеет не более одного корня. Кроме того, на крайних интервалах значения имеют разные знаки, и в каждом корне знак функции меняется. Следовательно, количество корней нечетно и не превышает 49.

Нетрудно проверить, что если роль ai будут играть числа 1, 4, 5, 8, 97, 100, а роль bi – числа 2, 3, 6, 7, 94, 95, 98, 99 , то уравнение f(x)=0 будет иметь ровно 49 корней.

Ответ

49.00
Прислать комментарий


Задача 110081

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Уравнения с модулями ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 8,9

Пусть a, b, c, d, e и f – некоторые числа, причём  ace ≠ 0.  Известно, что значения выражений  |ax + b| + |cx + d|  и  |ex + f |  равны при всех значениях x.
Докажите, что  ad = bc.

Решение

Пусть  x0 = –  f/e.  Тогда  0 = |ex0 + f| = |ax0 + b| + |cx0 + d| ≥ 0.  Значит,  ax0 + b = cx0 + d = 0,  следовательно,  x0 = – b/a = – d/c,  поэтому  b/a = d/c,  или
ad = bc.

Прислать комментарий

Задача 86119

Темы:   [ Арифметическая прогрессия ]
[ Уравнения с модулями ]
Сложность: 4-
Классы: 9,10,11

Сумма модулей членов конечной арифметической прогрессии равна 100. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 100. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов?

Решение

Обозначим сумму модулей членов арифметической прогрессии через S. Покажем, что величина S/(n2d) является постоянной для прогрессий, удовлетворяющих условию задачи, и равна 1/4, если данная прогрессия a1,a2, … ,an, для определённости, возрастает (для убывающей прогрессии эта величина равна -1/4). Из условия задачи следует, что функция
S(x) = |x - a1| + |x - a2| + … + |x - an|
принимает в трёх различных точках одинаковые значения. Так как

то при xai + 1 и i < n/2 эта функция убывает, при aixai + 1 и i = n/2 - постоянна, а при xai и i > n/2 - возрастает. Следовательно, условие задачи может выполняться только, когда число n = 2k чётно и

Ответ

±400.
Прислать комментарий


Задача 86125

Темы:   [ Арифметическая прогрессия ]
[ Уравнения с модулями ]
Сложность: 4-
Классы: 9,10,11

Сумма модулей членов конечной арифметической прогрессии равна 250. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 250. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов?

Решение

Обозначим сумму модулей членов арифметической прогрессии через S. Покажем, что величина S/(n2d) является постоянной для прогрессий, удовлетворяющих условию задачи, и равна 1/4, если данная прогрессия a1,a2, … ,an, для определённости, возрастает (для убывающей прогрессии эта величина равна -1/4). Из условия задачи следует, что функция
S(x) = |x - a1| + |x - a2| + … + |x - an|
принимает в трёх различных точках одинаковые значения. Так как

то при xai + 1 и i < n/2 эта функция убывает, при aixai + 1 и i = n/2 - постоянна, а при xai и i > n/2 - возрастает. Следовательно, условие задачи может выполняться только, когда число n = 2k чётно и

Ответ

±1000.
Прислать комментарий


Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .