ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 363]      



Задача 65715

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

По кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков?

Прислать комментарий     Решение

Задача 97991

Темы:   [ Принцип Дирихле (прочее) ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8,9

Автор: Анджанс А.

Какое наименьшее количество клеток нужно отметить на шахматной доске, чтобы
  1) среди отмеченных клеток не было соседних (имеющих общую сторону или общую вершину),
  2) добавление к этим клеткам любой одной клетки нарушало пункт 1?

Прислать комментарий     Решение

Задача 98411

Темы:   [ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 10,11

Имеется 19 гирек весом 1 г, 2 г, 3 г, ..., 19 г. Девять из них – железные, девять – бронзовые и одна – золотая. Известно, что общий вес всех железных гирек на 90 г больше, чем общий вес бронзовых. Найдите вес золотой гирьки.

Прислать комментарий     Решение

Задача 103780

Темы:   [ Принцип Дирихле (прочее) ]
[ Перебор случаев ]
[ Разбиения на пары и группы; биекции ]
[ Неопределено ]
Сложность: 3
Классы: 6,7,8

Среди любых десяти из шестидесяти школьников найдётся три одноклассника. Обязательно ли среди всех шестидесяти школьников найдётся
  а) 15 одноклассников;
  б) 16 одноклассников?

Прислать комментарий     Решение

Задача 105204

Темы:   [ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

На олимпиаде m>1 школьников решали n>1 задач. Все школьники решили разное количество задач. Все задачи решены разным количеством школьников. Докажите, что один из школьников решил ровно одну задачу.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .