ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 66]      



Задача 58099

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Поворот помогает решить задачу ]
Сложность: 6-
Классы: 8,9,10,11

Даны две окружности, длина каждой из которых равна 100 см. На одной из них отмечено 100 точек, а на другой — несколько дуг, сумма длин которых меньше 1 см. Докажите, что эти окружности можно совместить так, чтобы ни одна отмеченная точка не попала на отмеченную дугу.

Решение

Совместим данные окружности и посадим в фиксированную точку одной из них маляра. Будем вращать эту окружность и поручим маляру красить ту точку окружности, мимо которой он проезжает, всякий раз, когда какая-либо отмеченная точка лежит на отмеченной дуге. Нужно доказать, что после полного оборота часть окружности останется неокрашенной. Конечный результат работы маляра будет такой же, как если бы ему поручили на i-м обороте красить окружность, когда i-я отмеченная точка лежит на одной из отмеченных дуг, и сделали бы 100 оборотов. Так как в этом случае при каждом обороте окрашивается меньше 1 см, после 100 оборотов будет окрашено меньше 100 см. Поэтому часть окружности останется неокрашенной.
Прислать комментарий


Задача 58100

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Поворот помогает решить задачу ]
Сложность: 6
Классы: 8,9,10,11

Даны две одинаковые окружности. На каждой из них отмечено по k дуг, угловые величины каждой из которых меньше $ {\frac{1}{k^2-k+1}}$ . 180o, причем окружности можно совместить так, чтобы отмеченные дуги одной окружности совпали с отмеченными дугами другой. Докажите, что эти окружности можно совместить так, чтобы все отмеченные дуги оказались на неотмеченных местах.

Решение

Совместим данные окружности и посадим в фиксированную точку одной из них маляра. Будем вращать эту окружность и поручим маляру красить ту точку окружности, мимо которой он проезжает, всякий раз, когда пересекаются какие-либо отмеченные дуги. Нужно доказать, что после полного оборота часть окружности останется неокрашенной. Конечный результат работы маляра будет такой же, как если бы ему поручили на i-м обороте красить окружность, когда i-я отмеченная дуга окружности, на которой сидит маляр, пересекается с какой-либо отмеченной дугой другой окружности, и сделали бы k оборотов.
Пусть $ \varphi_{1}^{}$,...,$ \varphi_{n}^{}$ — угловые величины отмеченных дуг. По условию $ \varphi_{1}^{}$ < $ \alpha$,...,$ \varphi_{n}^{}$ < $ \alpha$, где $ \alpha$ = 180o/(k2 - k + 1). За то время, пока пересекаются отмеченные дуги с номерами i и j, маляр окрашивает дугу величиной $ \varphi_{i}^{}$ + $ \varphi_{j}^{}$. Поэтому сумма угловых величин дуг, окрашенных маляром на i-м обороте, не превосходит k$ \varphi_{i}^{}$ + ($ \varphi_{1}^{}$ +...+ $ \varphi_{k}^{}$), а сумма угловых величин дуг, окрашенных за все k оборотов, не превосходит 2k($ \varphi_{1}^{}$ +...+ $ \varphi_{k}^{}$). Заметим, что при этом пересечение дуг с одинаковыми номерами мы учли фактически k раз. В частности, точка A, мимо которой проезжает маляр в тот момент, когда совпадают отмеченные дуги, заведомо покрашена k раз. Поэтому целесообразно выбросить из рассмотрения те дуги окружности, которые маляр красит в моменты пересечения каких-либо отмеченных дуг с одинаковыми номерами. Так как все эти дуги содержат точку A, то фактически мы выбросили только одну дугу, причем угловая величина этой дуги не превосходит 2$ \alpha$. Сумма угловых величин оставшейся части дуг, окрашенных на i-м обороте, не превосходит (k - 1)$ \varphi_{1}^{}$ + ($ \varphi_{1}^{}$ +...+ $ \varphi_{k}^{}$ - $ \varphi_{i}^{}$), а сумма угловых величин оставшейся части дуг, окрашенных за все k оборотов, не превосходит (2k - 2)($ \varphi_{1}^{}$ +...+ $ \varphi_{k}^{}$) < (2k2 - 2k)$ \alpha$. Часть окружности останется неокрашенной, если выполняется неравенство (2k2-2k)$ \alpha$$ \le$360o - 2$ \alpha$, т. е. $ \alpha$$ \le$180o/(k2 - k + 1).


Прислать комментарий


Задача 35795

Темы:   [ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 2+
Классы: 7,8,9

В коридоре длиной 100 метров постелено 20 дорожек общей длиной 1 километр. Ширина каждой дорожки равна ширине коридора. Какова максимально возможная суммарная длина незастеленных участков коридора?

Подсказка

Какова минимальная длина самой длинной из дорожек?

Решение

Покажем, что незастеленными могли оказаться не более 50 метров. В самом деле, из 20 дорожек суммарной длиной 20*50=1000 метров длина хотя бы одной из дорожек не меньше 50 метров. (Если бы длина каждой была меньше 50 метров, то суммарная длина всех была бы меньше километра.) Таким образом, одна из дорожек покрывает хотя бы 50 метров коридора. С другой стороны, если взять 20 дорожек по 50 метров и положить их точно друг на друга, то суммарная длина дорожек будет равна 1 километру, однако 50 метров коридора не будет покрыто дорожками.

Ответ

50 метров.
Прислать комментарий


Задача 54773

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 8,9

Через точку на плоскости провели 10 прямых, после чего плоскость разрезали по этим прямым на углы.
Докажите, что хотя бы один из этих углов меньше 20°.

Подсказка

Предположите, что каждый из полученных углов не меньше 20°.

Решение

Десять прямых, проведённых через одну точку, разбивают плоскость на 20 углов. Если все они не меньше 20°, то их сумма не меньше
20·20° = 400° > 360°.  Противоречие.

Прислать комментарий

Задача 109018

Темы:   [ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 7,8,9

Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o .

Решение

Если три дуги покрывают некоторую часть окружности так, что все они имеют общую часть, то из них всегда можно выбрать две такие, которые покроют ту же часть окружности. Поэтому можно выбросить лишние дуги так, что каждая часть окружности будет покрыта не более чем два раза, а сумма покрывающих дуг будет не более 720o .
Прислать комментарий


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .