ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 30840

Темы:   [ Троичная система счисления ]
[ Взвешивания ]
Сложность: 5-
Классы: 8,9,10

Какое наименьшее число гирь необходимо для того, чтобы иметь возможность взвесить любое число граммов от 1 до 100 на чашечных весах, если гири можно класть на обе чашки весов?

Решение

При решении этой задачи нам понадобится следующее интересное свойство троичной системы счисления:

любое натуральное число можно представить в виде разности двух чисел, запись которых в троичной системе счисления содержит только 0 и 1.

Для доказательства нужно записать исходное число в троичной системе счисления и построить требуемые числа поразрядно справа налево. При этом если у получившихся чисел в каких-то одноименных разрядах стоят единицы, то их можно заменить нулями.

Теперь понятно, что достаточно иметь 5 гирь с весами 1, 3, 9, 27, 81 (подумайте, почему не нужна гиря весом 243 грамма).

Четырех же гирь явно недостаточно, так как с их помощью можно взвесить не более 34 - 1 = 80 различных весов (каждая гиря либо на левой чашке весов, либо на правой, либо не участвует во взвешивании).

Прислать комментарий

Задача 102822

Темы:   [ Взвешивания ]
[ Троичная система счисления ]
Сложность: 2
Классы: 6,7

Продавец с гирями. Четырьмя гирями продавец может взвесить любое целое число килограммов, от 1 до 40 включительно. Общая масса гирь равна 40 кг. Какими гирями располагает продавец?

Ответ

1кг,3кг,9кг,27кг.
Прислать комментарий


Задача 60894

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Троичная система счисления ]
Сложность: 2+
Классы: 6,7,8

Имеются весы с двумя чашами и по одной гире в 1 грамм, 3 грамма, 9 грамм, 27 грамм и 81 грамм. Как уравновесить груз в 61 грамм, положенный на чашу весов?

Ответ

81 + 9 + 1 = 61 + 27 + 3

Прислать комментарий

Задача 60898

Темы:   [ Взвешивания ]
[ Троичная система счисления ]
Сложность: 3
Классы: 7,8,9

Вы имеете право сделать 4 гири любого веса. Какие это должны быть гири, чтобы на весах из предыдущей задачи можно было взвесить грузы от 1 до 40 кг?

Ответ

1, 3, 9 и 27 кг.

Прислать комментарий

Задача 60900

Темы:   [ Теория алгоритмов (прочее) ]
[ Троичная система счисления ]
Сложность: 3
Классы: 6,7,8,9

а) У одного человека был подвал, освещавшийся тремя электрическими лампочками. Выключатели этих лампочек находились вне подвала, так что включив любой из выключателей, хозяин должен был спуститься в подвал, чтобы увидеть, какая именно лампочка зажглась. Однажды он придумал способ, как определить для каждого выключателя, какую именно лампочку он включает, сходив в подвал ровно один раз. Какой это способ?
б) Сколько лампочек и выключателей можно идентифицировать друг с другом, если разрешается 2 раза спуститься в подвал?

Решение

а) Лампочка может находится в трех состояниях — включенном, выключенном и в нагретом. б) 9.

Прислать комментарий

Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .