ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107782  (#М1494)

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Разные задачи на разрезания ]
[ Принцип крайнего (прочее) ]
[ Инварианты ]
Сложность: 4
Классы: 8,9,10

Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.

Прислать комментарий     Решение

Задача 98270  (#М1500)

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

Докажите, что среди 50 человек найдутся двое, у которых чётное число общих знакомых (быть может, 0) среди остальных 48 человек.

 
Прислать комментарий     Решение

Задача 98248  (#М1502)

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 8,9

Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что  AP + AQ = 1  (A – вершина n-угольника).
Найдите сумму углов, под которыми отрезок PQ виден из всех вершин n-угольника, кроме A.
Прислать комментарий     Решение


Задача 98253  (#М1504)

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Целочисленные и целозначные многочлены ]
[ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 4
Классы: 8,9

а) Существуют ли такие натуральные числа a, b, c, что из двух чисел  a/b + b/c + c/a  и  b/a + c/b + a/c  ровно одно – целое?

б) Докажите, что если они оба целые, то  a = b = c.

Прислать комментарий     Решение

Задача 98268  (#М1506)

Темы:   [ Многочлены (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10

а) Разбейте отрезок  [0, 1]  на чёрные и белые отрезки так, чтобы для любого многочлена p(x) степени не выше второй сумма приращений p(x) по всем чёрным отрезкам равнялась сумме приращений p(x) по всем белым интервалам.
(Приращением многочлена p по отрезку  (a, b)  называется число  p(b) – p(a).)

б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?

 
Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .