ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Зимин А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 65459

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD.

Прислать комментарий     Решение

Задача 65716

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 8,9,10

Автор: Зимин А.

В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают).

Прислать комментарий     Решение

Задача 66839

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Неравенство Коши ]
Сложность: 4
Классы: 8,9,10,11

Куб, состоящий из $(2n)^3$ единичных кубиков, проткнут несколькими спицами, параллельными рёбрам куба. Каждая спица протыкает ровно 2$n$ кубиков, каждый кубик проткнут хотя бы одной спицей.
  а) Докажите, что можно выбрать такие $2n^2$ спиц, идущих в совокупности всего в одном или двух направлениях, что никакие две из этих спиц не протыкают один и тот же кубик.
  б) Какое наибольшее количество спиц можно гарантированно выбрать из имеющихся так, чтобы никакие две выбранные спицы не протыкали один и тот же кубик?

Прислать комментарий     Решение

Задача 66661

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Преобразования плоскости (прочее) ]
[ Теорема синусов ]
Сложность: 5
Классы: 10,11

Автор: Зимин А.

Дан неравнобедренный треугольник $ABC$. Вписанная окружность касается его сторон $AB$, $AC$ и $BC$ в точках $D$, $E$, $F$ соответственно. Вневписанная окружность касается стороны $BC$ в точке $N$. Пусть $T$ – ближайшая к $N$ точка пересечения прямой $AN$ с вписанной окружностью, а $K$ – точка пересечения прямых $DE$ и $FT$. Докажите, что $AK||BC$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .