ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Карпов Д.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 109655

Темы:   [ Геометрия на клетчатой бумаге ]
[ Боковая поверхность параллелепипеда ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Симметрия и инволютивные преобразования ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Боковая поверхность прямоугольного параллелепипеда с основанием a×b и высотой c (a, b и c – натуральные числа) оклеена по клеточкам без наложений и пропусков прямоугольниками со сторонами, параллельными рёбрам параллелепипеда, каждый из которых состоит из чётного числа единичных квадратов. При этом разрешается перегибать прямоугольники через боковые ребра параллелепипеда. Докажите, что если c нечётно, то число способов оклейки чётно.

Прислать комментарий     Решение

Задача 109570

Темы:   [ Процессы и операции ]
[ Арифметическая прогрессия ]
[ Геометрия на клетчатой бумаге ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10

Натуральные числа от 1 до 1000 по одному выписали на карточки, а затем накрыли этими карточками какие-то 1000 клеток прямоугольника 1x 1994 . Если соседняя справа от карточки с числом n клетка свободна, то за один ход ее разрешается накрыть карточкой с числом n+1 . Докажите, что нельзя сделать более полумиллиона таких ходов.
Прислать комментарий     Решение


Задача 109700

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
Сложность: 4
Классы: 7,8,9,10

В стране несколько городов, некоторые пары городов соединены беспосадочными рейсами одной из N авиакомпаний, причем из каждого города есть ровно по одному рейсу каждой из авиакомпаний. Известно, что из каждого города можно долететь до любого другого (возможно, с пересадками). Из-за финансового кризиса был закрыт  N – 1  рейс, но ни в одной из авиакомпаний не закрыли более одного рейса. Докажите, что по-прежнему из каждого города можно долететь до любого другого.

Прислать комментарий     Решение

Задача 109615

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Принцип крайнего (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10,11

В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.

Прислать комментарий     Решение

Задача 109726

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Принцип крайнего (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4+
Классы: 8,9,10

В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.
Докажите, что существует циклический маршрут, длина которого не делится на 3.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .