ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Полянский А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 64402

Темы:   [ Описанные четырехугольники ]
[ Неравенства для элементов треугольника (прочее) ]
[ Теорема косинусов ]
[ Доказательство от противного ]
Сложность: 3+

В описанном четырёхугольнике ABCD  AB = CD ≠ BC.  Диагонали четырёхугольника пересекаются в точке L.
Докажите, что угол ALB острый.

Прислать комментарий     Решение

Задача 64648

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема синусов ]
[ Конкуррентность высот. Углы между высотами. ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 10,11

В выпуклом четырёхугольнике ABCD диагонали перпендикулярны. На сторонах AD и CD отмечены соответственно точки M и N так, что углы ABN и CBM прямые. Докажите, что прямые AC и MN параллельны.

Прислать комментарий     Решение

Задача 64809

Темы:   [ Три точки, лежащие на одной прямой ]
[ Симметрия помогает решить задачу ]
[ Медиана, проведенная к гипотенузе ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Средняя линия треугольника ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 9,10

Пусть I – центр вписанной окружности треугольника ABC, M, N – середины дуг ABC и BAC описанной окружности.
Докажите, что точки M, I, N лежат на одной прямой тогда и только тогда, когда  AC + BC = 3AB.

Прислать комментарий     Решение

Задача 111827

Темы:   [ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 9,10,11

Вписанная окружность треугольника ABC касается сторон BC, AC, AB в точках A1, B1, C1 соответственно. Отрезок AA1 вторично пересекает вписанную окружность в точке Q. Прямая l параллельна BC и проходит через A. Прямые A1C1 и A1B1 пересекают l в точках P и R соответственно. Докажите, что  ∠PQR = ∠B1QC1.
Прислать комментарий     Решение


Задача 111834

Темы:   [ Шахматная раскраска ]
[ Свойства разверток ]
[ Куб ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

Грани куба 9×9×9 разбиты на единичные клетки. Куб оклеен без наложений бумажными полосками 2×1 (стороны полосок идут по сторонам клеток). Докажите, что число согнутых полосок нечётно.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .